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The Discriminating Power of Items

that Measure More than One Dimension

Statistical measures of item discrimination are computed for

several reasons. The traditional measures, usually the point-

biserial or biserial correlations between item scores and total

scores, are used as general indicators of item quality, or as

screening variables for use in selecting items for a test. During

test construction, items are often selected to have a

discrimination index that is greater than a specified value, such

as .20 or .30. Discrimination indices may also be used to

determine whether an item is measuring the same construct as the

total score on the test. For the most part, the newer, item

response theory (IRT) measures of discrimination and the related

concept, information, are used in the same way, but they are also

used to specify the precision of measurement provided by an item

at different levels of ability along the ability scale.

Both the traditional and IRT measures of the discriminating

power of an item are based on the assumption that a test measures

a single trait--either that defined by the total score, or by

the 0-scale. This paper will generalize the concept of item

discrimination to the case where more than one ability is required

to determine the correct response to an item. In making this

generalization, the conceptual framework supplied by IRT will be

0u
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used. This paper will also draw upon the definition of

multidimensional item difficulty (MID) developed by Reckase

(1985). This definition defines MID as the direction and distance

from the origin of the space to the point of steepest slope.

Because of the close connection within IRT between item

discrimination and item information, a multidimensional extension

of the concept of item information will also be presented.

This paper is composed of three parts. First, the concept

discrimination for multidimensional items will be developed in

general terms. Second, the general definition will be applied to

a particular multidimensional IRT model to determine the

mathematical expression for multicimensional discrimination and

information for that case. Finally, measures of multidimensional

discrimination and information will be computed using item

response data from a form of the ACT Mathematics Test and

the use of the statistics will be discussed.

Theoretical Framework

The work presented in this paper is based upon the assumption

that the interaction between a person and an item can be described

by one of a class of well behaved probability functions. These

functions relate the probability of a correct response to an item

to a person's location in a multidimensional ability space, as

indicated by their 0-vector, and the characteristics of the item,
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as indicated by a vector of item parameters, a. That is,

P (x
ij

= 1) = f (oi , 6
j

) , ( 1 )

where xij is the score on Item i for Person 1. This function is-

assumed to be "well behaved" in that for all dimensions in the

space, or any combinations of dimensions, as 0i increases,

P (xij = 1) is nondecreasing. McKinley and Reckase (1982)
- -

describe a number of multidimensional item response theory (MIRT)

models that are well behaved in the sense described here.

Multidimensional Discrimination

A measure of item discrimination for an item whose

performance can be described by Equation 1 will be useful to the

extent that it provides the same type of information that is

provided by the unidimensional discrimination statistics. That

is, the multidimension measure of discrimination (MDISC) should

allow items to be compared on a general measure of quality, to be

classified as above or below a standard of quality, and to be used

as an indicator of strength of relationship of the item

performance to dimensions in the ability space. Further, it would

be especially convenient if the MDISC statistics were related to

the MID statistics in the same way that unidimensional IRT item

statistics are related so that some of the interpretive framework

that has been developed for the unidimensional case can be
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generalized to the multidimensional case.

In unidimensional IRT, the discrimination parameter is

related to the slope of the item characteristic curve (ICC) at the

point where the slope is steepest, the point of inflection. The

point o: inflection also defines the difficulty parameter for the

items. The most direct generalization of this concept to the

multidimensional case would be to relate MDISC to the slope of the

surface defined by Equation 1 at the point of steepest slope in

the multidimensional space. However, this definition of MDISC has

several problems. For some mathematical forms of the function in

Equation 1 (e.g., the noncompensatory models), the point of

maximum slope occurs when at least one of the 8's approaches

infinity. Therefore, the MDISC statistics could not be related to

MID in the same way that is true for the unidimensional models.

For other classes of models (e.g., the compensatory models), there

are an infinite number of points of maximum slope. This fact also

causes difficulties when interpreting the MDISC statistic.

Therefore, an alternative definition for MDISC will be proposed

that uniquely determines a single value for MDISC and that closely

relates it to the MID.

The definition proposed in this paper specifies the MDISC as

a function of the slope of the item response surface (IRS) defined

by Equation 1 at the steepest point in the direction indicated by

the MID. Conceptually, determining the MDISC value can be thought
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of as requiring several steps. First, a direction from the origin

of the space is selected and the point of inflection of the IRS

along the line defined by this direction is determined. This

process determines the point of steepest slope in the direction

specified. Next, the slope at the point of inflection in the

specified direction is determined. The same process is followed

in each direction from the origin and the steepest slope is

determined. All of theses slopes are then compared to determine

which is the steepest overall. This value will be used to compute

the MDISC statistic. The direction that gives the steepest slope

is the same as the direction specified by the MID. The distance

from the origin to the point of steepest slope in the direction

indicated by the MID, is the distance component of the MID

statistic.

The mathematical procedure for determining MDISC has four

steps. First, the mathematical expression for the IRS is

converted to polar coordinates to simplify the analysis. Second,

the second derivativ- in direction a from the origin is used to

determine the point of steepest slope in that direction. Third,

the expression for the slope at the point of steepest slope is

determined using the first derivative. Finally, the first

derivative is taken with respect to a to determine the direction

of overall steepest slope. A function of the slope in that

direction is proposed as the MDISC statistic.
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For all of the IRS's considered so far, this procedure yields

a unique value of MDISC that has the same relationship to MID that

the a-parameter has to the b-parameter in unidimensional IRT.

This relationship will be demonstrated in the next section when

the MDISC definition is applied to a particular MIRT model.

Multidimensional Information

Although multidimensional information (MINF) is related to

the MDISC in that if an item has a high value of MDISC it will

providea lot of information somewhere in the ability space, the

concept is also quite different because it is concerned with the

ability of the item to discriminate at each point in the space

rather than just at the steepest point of the IRS.

The definition of MINF proposed in this paper is a direct

generalization of the unidimensional IRT concept of information.

For unidimensional IRT, information at an ability level, 8, is

defined as the ratio of the square of the slope of the ICC at

ability level 0 to the variance of error of the item score at that

level of e. Mathematically, item information is expressed as

follows.

[.6 P
i
(e)

2

I.(0) -
6 0

-1 P
i
(0) Q

i
(e)

(2)
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where I.(8) is the information from Item i at ability level 8,

P.1 (8) is the probability of a correct response to Item i

for a person with ability 8,

and Qi(8) .- 1 - P
i
(e) .

Test information is simply the sum of item information values

n

T = E I.(e)
i=1 I

(3)

where n is the number of items.

For the multidimensional case, Equations 2 and 3 can still be

used, but the slope in the numerator of Equation 2 must be

determined in a slightly different way. When an IRS is considered

instead of an ICC there are many slopes at any point in the

ability space rather than one. Depending on the direction that is

taken at the point in the space, the slope will differ. The slope

will be much greater if a direction is selected that goes up the

surface rather than one that goes across it. One direction may

yield a slope of zero while another direction, at the same point

in the space, may yield a fairly steep slope. Thus, direction in

the space must be considered when determining the information

provided by the item. This is the same as specifying how much

information is provided about a particular composite of abilities

at a point in the ability space.

9
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In order to determine the slope in a particular direction,

the mathematical procedure known as the directional derivative is

needed. The directional derivative is defined as

6 P(e) 6 P(e) 6 P(e)
V P(e) - COS a + cos a2+ . . . + cos a (4)

66
2

68
1

68 n'
n

where a is the vector of angles with the coordinate axes in

the 8- space, ai (i = 1,n) is an element of the vector, 8 is the

vector of abilities defining a point in the space,

and ei(i = 1,n) is an element of the vector. Equation 4 gives the

slope in direction a at the point 8 in the ability space.

When computing the multidimensional information, the

directional derivative replaces the derivative in the numerator of

Equation 2. When this is done, item information can be determined

for any angle, representing different composites of abilities, in

the space. Thus, to totally describe the information structure of

an item, many information plots are needed, not just one. In

principal, an information function can be determined for the

infinite number of directions from the origin. In practice,

determining the information function for angles at 10° intervals

between 0° and 90° from the axes is sufficient to determine where,

and for what combination of abilities, an item provides

information.

The next section of the paper presents a derivation of MDISC

10
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and MINE for a particular MIRT model. The following section

applies the concepts to actual test data from the ACT Mathematics

Usage Test.

MDISC and MIUF for the M2PL Model

In order to demonstrate the use of MDISC and MINE, a MIRT

model is needed that can be used to derive the mathematical

expressions for the statistics. Since Reckase (1985) has already

developed the MID concept using the multidimensional extension of

the two-parameter logistic model (M2PL) and an estimation program

is available for the model (McKinley & Reckase, 1983), the M2PL

model will be used as an example. However, the concepts can also

be applied equally as well to other MIRT models.

The M2PL model is given by

P(x = 1 I a. d. e) -
e

ij 1, -1' e0 + d.
1

1 + e
j 1

e 0 + d.
1 j 1

(5)

where Eij
is the score (0, 1) on Item i by Person j,

al. is the vector of item discrimination parameters,

d
i

is a scalar parameter that is related to the difficulty

of the item

and ei is the vector of ability parameters for Person j.



Discriminating Power

11

MDISC

The MDISC for an item is a function of the slope at the

steepest point in the MID direction for an item. Reckase (1985)

derived the MID direction as

a
-ik

cos aik -
m ]V 2

kt 1

a?
ik

=

where a
ik

is the angle with Axis k for Item i,

aik .ne elem entis L kth el of vectar a1,,

and m is the number of dimensions in the space.

He also determined that the slope of the IRS at the point of

inflection in direction a. is
i

M1
I

... n cos aik
i

Slope = LT k:1

(6)

Substituting Equation 6 into Equation 7 yields the slope in the

MID direction

m a 1/2

(8)

k=1
E a

-ik 11: a2.
.' 4

k=1

1K
Slope = E aik

1/2

For the unidimensional two-parameter logistic (2PL) model, the

(7)
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slope at the point of inflection is equal to (1.7) (1/4)ai.

m 1/2

Thus [
i

a
k

is analogous to the a-parameter in

k=1

the unidimensional model. Therefore, it is proposed that the

MDISC be defined as

m 1/2

MDISC = E a?
-ik

k=1

12

(9)

This definition of MDISC has several nice properties. First,

if an item measures only dimension t, that is, when ail?. > 0 and

a.=0,,iit,t.11==a.and the multidimensionalij

discrimination is equal to the unidimensional discrimination

parameter, as it should.

Second, when the 2PL model is expressed in the slope-

intercept form, the exponent is given by ai8j di

where di = -biai. The distance, Di, in the MID has the same

relationship with the intercept term, di, of Equation 5 as bi

does with di for the 2PL model. That is,

di = - D MDISC (10)
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- d. -d.

-
-1 -1

D.
-1 m 1/2 MDISC

E a?
1k

k=1

Finally, MDISC is on the same scale as aik, namely, four

times the slope, so it can be interpreted accordingly. The

definition meets all the requirements seated earlier for a

generalization of the IRT discrimination parameter.

MINE

In order to compute the MINE for the M2PL model, the

directional derivative of the IRS is needed. The directional

derivative is given by

v
a

Pi(e) = a. P (0)Q.(e)cos a
1

+ a. P.(0)Q.(0)cos a2 + . .

1 1-i -1 -12-1 1

+ a.
1m

P.(0)Q.(e)cos a
m

,

- -1 -1

m

= P.1 (0)Q.
-1

(e) E a
-ik

cos a
k-

k=1

(12)

This expression can be substituted for the term in the numerator

of Equation 2 yielding
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I. ( 0) -la

m
(P.(8) Q.(8) E a

ik
cos a

k
)2

-1 -1 -
k=1

Pile)

m
- 1

= ye) Qi(e) ( Z a.,cos ak)2 .

k=1 "
(13)

From this equation, the information at the point indicated by 8 in

direction a can be determined. As with the unidimensional

definition of information, the item information functions can be

summed to obtain a test information function. However, when the

test information is computed, the same direction must be used for

all of the items.

Example of the Application of MDISC and MINE

In order to demonstrate the use of MDISC and MINF, Form 24B

of the ACT Mathematics Usage Test was analyzed to determine

estimates of the parameters of the M2PL model. The responses from

a systematic sample of 1,000 examinees were used for this

purpose. The MAXLOG program (McKinley & Reckase, 1983) was used

to estimate the parameters. A two-dimensional solution was

obtained for this example so that the results could be represented

graphically.

The parameter estimates for the M2PL model, the MID, and the

MDISC statistics for the 40 items on the test are presented in Table

1. Of the items on the test, Item 27 has the highest MDISC

statistic. This means that of all of the items on the test, this
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item was the best at differentiating between examinees in

different parts in the 0-space. However, this item discriminates

best along a line that is at a 46 angle to the Dimension 1

axis. Along the Dimension 1 axis (at 0 to the axis), the

discrimination is only 1.66, which is less than the discrimination

for Item 10 along the axis. Thds, the MDISC gives an overall

measure of the quality of the item, but it does not indicate that

the item is of equal quality in measuring in all directions (i.e.,

for all weighted composites of abilities).

Insert Table 1 about here

The MDISC statistics for two items can only be directly

compared if the items measure in the same direction. For example,

Items 29 and 36 can be compared on MDISC because they measure in

the same direction. The MDISC statistics cannot be compared for

Items 3 and 30 because the directions are quite different. To

compare these items, a common dire 'tnn a, would have to be

selected, and then the discrimination in the a direction would

have to be computed using the formula

m

Directional Discrimination . L
!Lk cos °Lk

k :1

For items 3 and 30, the directional discriminations in direction

/6
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30° from Dimension 1 are 1.54 and 1.19 respectively: at 60° from

Dimension 1, they are 1.10 and 1.39 respectively. Thus, depending

on the direction, the ordering of the items on discrimination

changes. However, Item 3 is more discriminating overall since it

has a higher MDISC statistic.

In order to give some further guidance in interpreting the

MD1SC statistic, the correlation has been computed between it and

the biserial correlation between the item and the total score on

the test, the a-parameter estimate from the three-parameter

logistic model obtained from LOGIST (Wingersky, Barton & Lord,

1982), and the a-parameter estimates from the M2PL model. These

correlations are given in Table 2. The MDISC statistic for this

set of data was found to be correlated most highly with the rbis

statistic. It is interesting that the a-parameter estimate from

LOGIST is most highly related to a2 while rbis is most highly

related to a1. The relationship between MDISC, and a1 and a2 is

dictated by Equation 9.

Insert Table 2 about here

In order to demonstrate the use of the MINF, the MINF was

computed for Item 10 using directions of 0°, 30°, 60°, and 90°

from Dimension 1. The results for this item are shown in two

different ways in Figures 1 and 2. Figure 1 indicates the amount

I"
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of information in direction a by the height of the surface above

the 8-plane. The four parts of Figure 1 show the surfaces for

each of the four directions. The figures show that the item gives

no information about Dimension 2, and that the amount of

information provided by the item increases as the angle goes from

90° to 0°. In all cases, the information is greatest along the

line, el = -.19.

Insert Figure 1 about here

This same data is presented in Figure 2 using a

representation scheme suggested by David Thissen. At selected

points in the 8-space, the information is represented by the

length of the line in the direction taken in the space. Lines are

give at 10° intervals. Figure 2 shows that Item 10 gives no

information about Dimension 2, and progressively more information

as the angle goes from 90° to 0° with respect to Dimension 1.

Most of the information provided in the four parts of Figure 1 is

given ln Figure 2.

Insert Figure 2 about here

The information supplied by the entire test is shown by the

three surfaces in Figure 3 and the line plots in Figure 4. A
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comparison of Figures 3a and 3c shows that the test supplies

somewhat more information about 8
1

than 8
2.

Figure 3b shows that

the most information is provided about an equally weighted

composite of 01 and 82. The same information is given in Figure 4,

but the line plot more clearly indicates the regions of

the 8-space that are best measured by the test.

Insert Figures 3 and 4 about here

Discussion

The purpose of this paper has been to define conceptually the

concepts of multidimensional discrimination and information, to

derive the mathematical expressions for the concepts for a

particular multidimensional IRT model, and then to apply the

concepts to actual test data. Multidimensional discrimination was

defined as a function of the slope of the item response surface in

the direction specified by the multidimensional difficulty

(Reckase, 1985). For the M2PL model, th!s definition results in a

statistic that has the same relationship to multidimensional

difficulty that a does to b for the unidimensional IRT models.

This statistic is defined as the square root of the sum of the

squared a-parameters from the M2PL model.

13
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Multidimensional information was defined by the same

mathematical function as unidimensional information, but the

directional derivative was substituted for the standard derivative

in the numerator of the information expression (Equation 2). The

use of the directional derivative results in an information

measure that corresponds to a direction in the ability space.

Direction, in this case, is an indicator of the composite of

abilities that is of interest. Use of multidimensional

information makes very clear the dimensions being measured by a

test and the regions of the ability space being measured on each

dimension.

The ACT Mathematics Usage Test was used to demonstrate the

multidimensional discrimination and information. The use of the

statistics show that the items on the test vary substantially in

their directions of maximum discrimination and that the test tends

to measure Dimension 1 or a combination of Dimensions 1 ond 2 at a

greater level of precision than Dimension 2 alone. The regions of

the ability space that are best measured were also clearly

indicated.

The multidimensional measures of item quality, item

precision, and test precision given in this paper provide another

set of tools that can be used to gain a better understanding of

the measurea..ent process. Through their use, and the use of

multidimensional models, the dominance of unidimensional measures

20
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Table 1

Item parameters, MID, and MDISC for the items in the ACT

Mathematics usage Test, Form 24B

MID

Item a
i1

ai2 d
i (Ili cl i2

D.
1

MDISC

1 1.81 .86 1.46 25 65 -.73 2.00

2 1.22 .07 .17 4 89 -.14 1.22

3 1.57 .36 .67 13 77 -.42 1.61

4 .71 .53 .44 37 53 -.50 .89

5 .86 .19 .10 12 78 -.11 .88

6 1.72 .18 .44 6 84 -.25 1.73

7 1.86 .29 .38 9 81 -.20 1.88

8 1.33 .34 .69 14 76 -.50 1.37

9 1.19 1.57 .17 53 37 -.09 1.97

10 2.00 .00 .38 0 90 -.19 2.00

11 .87 .00 .03 0 90 -.03 .87

(table continues)
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MID

Item a
i1

ai2 d
i

MDISC
c' i1 a i2 D

i

12 2.00 .98 .91 26 64 -.41 2.23

13 1.00 .89 -.49 42 48 .37 1.34

14 1.22 .14 .54 7 83 -.44 1.23

15 1.27 .47 .29 20 70 -.21 1.35

16 1.35 1.15 -.21 40 50 .12 1.77

17 1.06 .45 .08 23 67 -.07 1.15

18 1.92 .00 .12 0 90 -.06 1.92

19 .96 .22 -.30 13 77 .30 .98

20 1.20 .12 -.28 6 84 .23 1.21

21 1.41 .04 -.21 2 88 .15 1.41

22 1.54 1.79 .02 49 41 -.01 2.36

23 .54 .23 -.69 23 67 1.18 .59

24 1.53 .48 -.83 17 73 .52 1.60

25 .72 .55 -.56 37 53 .62 .91

26 .51 .65 -.49 52 38 .59 .83

27 1.66 1.72 -.38 46 44 .16 2.39

(table continues)
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MID

Item a
i1

ai2 d
i

MDISC
'10 cli2

Di

28 .69 .i9 -.68 15 75 95 .72

29 .88 1.12 -.91 52 38 .64 1.42

30 .68 1.21 -1.08 61 29 .78 1.39

31 .24 1.14 -.95 78 12 .82 1.36

32 .51 1.21 -1.00 67 23 .76 1.31

33 .76 .59 -.96 38 52 1.00 .96

34 .01 1.94 -1.92 90 0 .99 1.94

35 .39 1.77 -1.57 78 12 .87 1.81

36 .76 .99 -1.36 52 38 1.09 1.25

37 .49 1.10 -.81 66 24 .67 1.20

38 .29 1.10 -.99 75 15 .87 1.14

39 .48 1.00 -1.56 64 26 1.41 1.11

40 .42 .75 -1.61 61 29 1.87 .86

,
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Table 2

Correlations betwee.. discrimination parameter estimates

Discrimination

Estimate 1. 2. 3. 4. 5.

1.

2.

3.

4.

5.

MDISC

aLOGIST

rBIS

a
1

a
2

.46 .78

.14

.52

-.21

.80

.46

.74

.16

-.34

26



Discriminacing Power

26

Figure Caption

Figure 1. Multidimensional information for Item 10 at angles of

0°, 30°, 60°, and 90° to the el axis.

Figure 2. Multidimensional information for Item 10 represented by

directicnal vectors from points in the 0-space.

Figure 3. Multidimensional information for the ACT Mathematics

Usage Test at angles of 0°, 45°, and 90° to the 01 axis.

Figure 4. Multidimensional information for the ACT Mathematics

Usage Test represented as directional vectors from points ia the

0-space.
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